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(1 -Kp)2 E1+2>«.) ~Kp{1 -7&)1 (tan Ay - tan Az) + (1 +2X0)tan Ay
= - +
Pee 3(1+ 1)
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~=e - A FINITE-STEP METHOD FOR THE CALCULATION OF
SPAN LOADINGS OF UNUSUAL PLAN FORMS

By George S. Campbell

SUMMARY D .
X

The appllicability of a well-known finlte-step method to the calcula-
tion of subsonic spanwlse load distribution, lift-curve slope, lateral
center of pressure, and sercdynamic center of unusuel plan forms bhas been
investigated. Camputing forms are presented to simplify calculation of
span loadings for conventional swept, M plan-form, and W plan-form wings.
Tebles of the downwash in the plane of a yawed vortex are presented.

Comparison of loading results by using 20 steps with liftlng-surface
regsults indicated that the 20-step method generally overestimated the
amount of loading at the wing tip. However, values of lift-curve slope,
lateral center of pressure, aerodynamic center, and losding shape across
the inbosrd three-quarter semlsgpan obtained by using the 20-gstep method
were generally In satlsfactory agreement with lifting-surface results.
Although use of an extra step at the .wing tip provided some lmprovement
in the load distribution near the tip, the over-all improvement did not
appear to warrent the extra calculation time involved. For a represen-
tative W plan form, it was found that use of 20 steps provided a span
loading that was essentially in agreement with L4O-step results.

INTRODUCTTION

The need to provide maximum structural strength and to eliminate
undesirable aerocelagtic phenomena, without sacrificing airplane perfor-
mance or compromising accepteble stabllity and control charascteristics
at any speed, has stimulated interest in wings having very unusual plan
Porms. Comparisons of serodynsmic characteristics of such wings on a
theoretical. basis have met with some difficultlies in the past, because
the available wing theorles generally have not been formulated in such
e manner as to permlt convenient and consistent applications of the theory
to wings of widely different shapes. TIn the usual formulation of the
theory, solutions based on Fourier series - and sometimes employing "middle
functions” - are used in order to reduce the number of simultaneous

UNCLASSIFIER
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equations. Such solutions may be used profitably for wings having no
abrupt changes in loadlng; however, for the more extreme cases, such as
wings of extreme sweep or M and W plan forms, it is not clear that solu~
tion of the original simultaneous equatlons can be avoided.

In the present paper, solutlons of span-load distributions, 1lift-
curve slopes, lateral centers of pressure, and aerodynamic centers are
obtained through a consistent application of generally accepted funda-~
mentals of wing theory. The method involves the use of N horseshoe
vortices placed along the lifting 1ine and equating the downwash angle
at the three-quarter chord to the local wing incidence to form_N/E
equations in N/2 unknowns., Solutions of this type are somewhat cumbersome
if performed with the usual type of manually operated computing equipment
but are readily adaptable to relay-type digital computing machines.

The method used in the calculations i1s developed in detalil. Computing
forms and formules facliliteting solution.for the span-load dlstribution
and various aercdynamic parameters are presented. Applications of the
bagic 20-step method have been made for a series of wings having wildely
different plan forms, includlng unswept wings, swept wings, trianguler
wings, and M and W wings. Comparisons of results obtained by the present
method and by currently avallasble methods are made for some wings, and
the effects of several modifications to the basic 20-gtep method have
been illustrated.

SYMBOLS

A sweep angle of quarter-chord line, positive for sweepback
A aspect ratio (b2/8)

taper retio (Tip chord/Root chord)
Ky _ spanwise pogitlion of plan-form break for M or W wing
b wing span

wing ares
c local streamwise chord
Cav average chord (S/b)
c mean aerodynamic chord L /2 cedy

-b/2

t fraction of chord at which control-point line is located
X, ¥ coordinates of a point on the wing surface with respect

to axes of a given horseshoe vortex

el
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x, P longitudinel reference axes

P, q coordinates of & point on the wing surface with respect
' to root quarter chord (see fig. 1)

¥, Q lateral reference axes

N number of horseshoe vortlces across total wing span

8 semiwidth of horseshoe vortex

w(x, ¥) downwash velocity at any point (x, y) in the plane of a

horseshoe vortex, positive downward

F(x, y) downwash veloclty at any point (X, ¥) caused by =
rectangular horseshoe vortex of unit semiwlidth and
circulation strength equal to Ux (numerical values
glven in references 1 and 2)

F¢(¢, X, ¥) downwash velocity at any point (x, y) caused by a yawed
vortex of unit semlwidth and circulation strength equal
to Ln (numerical values presented in table I)

an downwash coefficlent; the downwash at any control point P,
due to the nth horseshoe vortex
r circulation strength
o= L
gVa
CZC
K span-loading coefficient
C1.Cav,
Cr, 1ift coefficlent iift
EpV2S
cy section 1ift coefficient (2r/vc)
ag section lift-curve slope (dc,/da)
a angle of attack, radlans
yqp lateral center-of-pressure location, percent semispan
a.c. serodynemic-center positlon, percent mean aerodynamic
chord '
p mess density of air
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v free-stream veloclty
M Mach number .

Subscripts and ebbreviations:

n number designating a particular horseshoe vortex, starting
from Jleft wing tip

v, number degignating s particular control point starting
from left wing tip _ R

LE leading edge
TE trailing edge
i inboard
o] outboerd

Wing notatlon:
In this paper, wings are designated in two forms:

A - A - A for untapered wings and plan forms of intermediate taper
NOLE A for trisngular wings, with A value indicating leading-edge sweep,

For example, 45-L-1 indicates a wing having 45° sweepback, aspect ratio L,
and taper ratio 1.0; and the designation U5°LE A 1indicates a triangular
wing with leading-edge sweepback of 450.

ANATYSIS

Baglc Concepts

In order to calculate the subgonic span loading of an arbitrary
wing, the wing may be replaced by a system of N horseshoe vortices along
the guarter-chord line. An equal number of control points 1s taken along
the three-guarter chord line, and the downwash velocity fram the total
vortex system is equated to the component of free-stream velocity normal
to the wing chord at each control point. Application of thilis tangent-
flow boundary conditlon for a symmetrical loadlng provides a set of
N/2 gimulteneocus equations in the N/2 unknown clrculation strengths
across the semispan. Solution of this set of equations provides the
span loading, and hence the 1ift slope and lateral center of pressure
of an arbitrary plan form. The location of the wing aercdynamic center
may be estimated using the assumption that the local aerodynamic center

lles on the guarter chord (as in reference 3), although such an agsumption

is physically incorrect.
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In the following derivation, a section lift-curve slope of 2x 1is
implied as a consequence of the three-quarter-chord concept. The vortices
placed along the lifting line are of the usual rectangular horseshoe t¥ype.
(See fig. 1.} '

Derivation of Method )

The pattern of vortices and control polnts used to compute a 10-step
span loading 1s illustrated iIn figure 1.

The downwash velocity in the plane of a rectangular horseshoe vortex
is given by the expression

F(x, y) (1)

w(x, ¥) = - 2

where

F(x, y) = - & (v + 1) - (y = 1)

_. 1 1 - X
Va2 + (v + 1)2 B2+ (v - 12 y'll: V2 + (v - 1)2

-4

(2)

}rll' =
v V&2 + (y + 1)2

and the x and y distances are expressed in horseshoe semispans (see p. 159
of reference 4). The values of F(x, y) are convenlently tabulated in
references 1 and 2. :

Digtributing an even number N of horseshoe vortices having N control

points across the wing span (fig. 1), the downwash velocity at any of the
control points Py resulting from the N horseshoe vortices 1s

X/
w(xy, ) = %{ Zn=l <b_/'2')F(xv’ yv) (3)
in which

Xy = PV - Pn
(&)
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For cases of symmetricel locadling and geometry, the downwash at any
of the control points Py becomes

N/2 [r
wixy, w) = EN; é (E];_Q)Fvn ' (5)

with the coefficient Fvn being given in terms of geometrical distances

measured in horseshoe semispans,

Fy = F[:(Pv - ) (ay - qn):] + F|-_(pv - o) (ay + qn)] (6)

For a conventional swept wing (fig. 1), the longitudinel distance
of any control point from the nth vortex is

Gv - 22) = [l - | [Joe0n + [ - ] 0] ()

For unusual plan forms, these distances may be determined either graphi-
cally or analytically. An example of such a plan form 1s the W type
shown In figure 2. The longitudinal distance for either M or W plan
forms heving linear taper over the semigpan is

2N
- = - —— + K.(tan - tan -
Py P T rE T b( Ay 8y

|v] E‘“’AV | el ®

A(l + x)

with all distances expressed 1n horseshoe semispans.
For small angles, the tangent-flow boundary condition
w(;v, yv) =V sin a, = Vo _ (9)

may be applied at each control point to provide a set of N/2 gimultaneous
equations in the N/2 unknown circulation strengths from equation (5):

(% Fy I'n* = 2 d—v') | (10)

=1 n N o N
V=l,2,3,- . = -2—

e
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For a symmetrical loading, solutlion of the set of N/2 simultaneous
equations provides the unkmown circulation strengths.
Calculation of Loading Parameters

A convenient form of the span-locading coefficient may be obtained
from the relatlon

ci¢C i t
K = L = .l_v. r
2

CrLCayv N/2
Fn'

n=

(11)

Lift-curve slope may be evaluated from the area under the symmetrical
span loading. Thus,

N/2

dac :
L _ 24 1

= ST 12
da . N 5 ¢ (12)

Lateral center of pressure is obtained from the formulia

_ 200 i“e n
Yep = W .

o=1 |b/2 fn (13)

If the assumption is made that the local aesrodynamlc center lies on
the quarter chord of stresmwlse wing sections, the aerodynamic center of
a conventional swept wing is given in terms of lateral center of pressure
by equation (1) of reference 3. Using the same assumption for an M or a
W wing of linear taper, the aerodynamic center may be calculated from

the g-—step loading, using the relatlion

K s
a.c. = -J%O- Pirs t % % KnEb tan Ai\+<~lgnl - Kb)tanACZI +

Root

% KZ Knlqn[tan./\i (14)
b

with all dlstances convenlently expressed in wing semispans.

s
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x|

+la

The chordwise location of the leading edge of the aerodyna.mic chord P]'_.Ec
(expressed in semispans) is glven by the expression

=0 - %)%+ &) - Ky - M) (b ag - tanAy) ¥ (14 )tan Ay
PLEE ~ 3(1 + a)

2 A '
3AE (1 + x)‘{| (23)

Uge of Yawed Vortices

-

In -the preceding analysis, rectangular vortlices have been distrib-
uted eslong the lifting line of the wlng. For swept wings, it would
gseem more reasonsble to use vortices having bound elements lying along
the quarter-chord line. The preceding development remains valid for
such a case provided the downwash function F of equation (2) is replaced
by the downwash function of a yawed Avor‘!:ex Fy.
b 4

]

|

ALY ¢ P(x: y)
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From a development sgimiler to that of Glauert, this downwash function EW
may be shown to be

1 (v + 1)cos ¥ + (x + tan ¥)sin ¥
Fyly, %, ¥) =< - -
¥y sin ¥ - X cos ¥ “(y +1)2 + (x + tan ¥)2

(y - 1)cos ¥ i (x - tan ¥)sin ¥ P S P x + tan ¥
v+ 1 VQ

Ay - D2+ (x - tean ¥2 ¥+ 1)2 + (x + tan ¥)2

‘}‘1 1 - X - tan ¥ | (16)
f [y - 12+ (x - ten 9)° -

The symbol F represents the downwash velocity at any point (x, ¥)
caused by a yawed vortex of unit semiwldth and clirculation strength
equal to U4x, numerical values of thls downwash function are presented
in table I. Expressions for obtaining Fy at negative x positions
aslong the vortex center line and for negatlve yaw angles are

Py(¥, - x, 0) = b = Fy(¥, x, 0) (1)
Fw—(—\b’, X, Y) = F\F(‘k, X, "Y) (18)

APPLICATIONS AND DISCUSSION

Use of Computing Forms

It has been found that use of 20 equal-width vortices (N = 20) has
generally provided satisfactory losding solutlons in about 9§ hours,
including solutions of the 10 simultaneous equations by use of the Crout
method in conjunction with manually operasted automatic computing machines.
The use of a relay computer would reduce the time required to about
5 hours. Because of the practicebility of such a 20-step system, a com-
puting form (witk illustrative values) for determining the loading coef-
ficients of swept wings 1ls presented in table II, and the coefficients
have been placed in the expanded form of the 10 slmultaneous equations
(table ITI). A computing form for determining the loading coefficients
of M or W plan-form wings is presented in table IV.

i
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Comperison with Other Methods

Twenty-step loadings (N = 20) for seven plan forms are compared with
Falkner's lifting-surface results.of references 5 and 6 (126 vortices
and six control points modifled for center-line sweep discbntinuity when
indicated as 126-6 modified) and with resulte of the Weissinger method
in figures 3 and 4. Five of the wings were untapered and the remaining
two wings were of triangular plan form. In the following discussion,
the Falkner lifting~-surface solutions are taken as the best avallable
standard of comparison. The aerodynamic-center position, as calculated
by the Weissinger and 20-step method, is based on the assumption that
the local center of pressure is located at the quartexr chord. -

The most notlcesble disagreement of the 20-step method with both
the Falkner and Welsslnger solutions lies in the excess load indlcated
at the tip. However, for all plen forms shown, the 20-step lateral

center of pressure wag in no case gresater than lg percent semispan out-

board of the lifting-surface value.

The 20-step lift-curve slopes for the untapered wings were generally
in closer agreement with the lifting-surface results than were the
Welssinger values, which were in all cases lower than the lift slopes
of Falkner. For the trlangular plan forms, the 20-step 1lift slopes were
lower than Falkner's values, but the disagreement was no greater than
that of the Welssinger method.

The agreement of the 20-step aerodynamic-center position with the
lifting~-surface value was generally satisfactory except at lower aspect
ratios, particularly for the 45-1-1 wing (designation referring to sweep,
aspect ratio, and taper ratio). This disagreement resulted primarily
from the incorrect assumption that the local aerodynemic center lles at
the quarter chord.

A particular case for which several theoretical sclutions are avall-
able is predérited in figure 4. In addition to the camparison with .
Falkner's lifting-surface calculation (fig. 4(a)), loamdings obtained by
four basically similar modified 1lifting-line methods are illustrated in
figure 4(b) including the method of Schlichting (reference 7). First,
it is seen that the agreement of Falkner's modified lifting-line loading
with the lifting-surface result 1s reasonable, especially considering
the calculation timeg involved. Secondly, for this moderately high com-
bination of aspect ratio amd sweepback, the center-loading dlp appears
to be exaggerated by the Welssinger method, and the 1lift slope 1s lowest
for this method.

The theoretical methods of Falkner, Welsslnger, and Schlichting all
assume that the wing loading can be expressed in the form of a Fourler
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series. This assumptlon is not valid vwhen there are rapid loading changes,
and so the use of middle functions is frequently necegsary. It is felt
that since in the finite-step method of this paper no form whatever is
assumed for the loading shape, involved treatment of localized dips and
bumps is effectively side-stepped.

Modifications to 20-Step Method

Addition of extra step at tlip.- Since use of 20 equal-wldth vortices
generally provided an overestimate of the loading at the wing tip, the
outboard step was replaced by two half-size vortices for three plan forms.
To obtaln downwash functlions et uneven ¥y values, the charts of refer-
ence 8 were used. Use of the extra tip step increased the over-all time
of calculation by 40 percent and disrupted the routine of the computation.
This latter factor makes computing more difficult and checking more
involved.

The effect of the extra step (fig. 5) was to reduce the tip loading
with 1ittle change in inboard load grading. Since the inboard load
grading 1s the primery factor in the determination of theoretical down-
wash, 1t is seen that on the baslis of these limited results, use of an
extra step at the tip would have negligible effect on downwash calculetions.

In comparing these loadings with those of Falkner (figs. 3(d) and
h(a)), 1t is seen that use of the extra tip step did not effect any
marked improvement in:the agreement of over-all loading shape or aero-
dynamic parameters with lifting-surfsce results.

Effect of yawed vortices and number of steps.- The effect of yawed
vortices on a calculated span loading 1is negligible if the control points
are located a sufficiently large number of horseshoe semiwldths behind
the 1ifting line so that yawing of the bound vortex does not modify the
loading coefficients Fy to any important degree. However, there are
several factors which would tend to increase the downwash contribution
of the bound vortices: reduced number of steps, increased aspect ratio,
increased sweep, decreased taper ratlo, and/or reduced section 1ift-
curve glope. Although no consistent investigation of the aforementioned
factors has been mede, limited results using yewed vortices are presented
in figure 6.

For a moderately high espect ratio, it is seen that the use of yawed
vortices had & negligible effect on the 20-step span loading (fig. 6(a)).
However, the use of 10 yawed vortices provided a better estimate of the
20-gtep loading than did an equal number of rectangulser vortices. As
would be expected, the effect of yawed vortices on span loading was
negligible for low-aspect-ratio wings. (See figs. 6(b) and 6(c).)
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While the 11ft slopes obtalned by using yawed vortices were generally
different from the values for rectangular vortices, no congistent effect
was oObserved and, for all cases calculated, the difference was less than
2 percent.

In addition to the results presented, it has been found from losding
calculations for several untapered 45° sweptback wings from aspect ratios
of 1.3 to 5.2 that 10 rectangular vortices were sufficlent to provide
1ift slopes that were in close agreement with both experimental values N
and wilith the modified lifting-line results of reference 9. R

Effect of section lift-curve slope.- A commonly used method for
calculating the Incompressible aerodynamic characteristics of wings
having a section lift-curve slope other then 2x involves a change in
the control-point locetlion in the ratio of ao/eﬂ. (See reference 9.)

A limited study of the effects of a, change on the spanwlse load dls-
tribution has been made by utilizing the aforementioned control-point
concept and the methods of the present paper, and the results are pre-
sented in figure 7. A change In ag of 10 percent produced only minor
changes In the spanwlise load distributions. A more substantisl effect

on load distribution is evident, however, for a 33lu-perce¢t reduction _-

in .ay and the computing sheets (for example, table II) have been set

up to include the effect of section lift slope based on the control-

polnt concept. The problem of the proper alrfoll section to use in

determining a, 18 discuassed briefly in reference 9. The effects of _ .
gsection 1lift slope on wing 1ift slope are also presented in figure 7 -
and the effects shown can be computed from equation (8) of reference 10. '

Additional applications of method.- The versatllity of the finite- L
step method mekes 1t particularly useful for unusual problems, such as .
M and W plan-form calculations. Moreover, the method 1s readlly adaptable
to the calculation of loading estimates for twisted and cambered wings,
estimation of the effect of elastic deformation on aerodynamic parameters,
loading calculations for coupled aircrsft, and problems requiring a
method that may be readily understood and adepted.

Results for an M and a W Plan Form

An example of a plan form for which the use of the Ffinite-step
method 1s partlcularly sulted is the wing of M or W plan form. The 3
incompressible loadings for the sweptback M and W wings of figure 8 _ _
are presented in figure 9(a)}. The Prandtl-Glauert transformation has
been used to obtaln the compressible loadings (Mach number of 0.7) for
these same wings (fig. 9(b)). The calculated effect of Mach number on
load distribution was relatively small (at M = 0.7), while the lift-curve

dwor

SONREDRNESiiin,



NACA RM L50L13 L - — - 13

slopes of all three wings were increased by nearly the same percentage
with increase in Mach number. Moreover, the 1ift slopes of the M and
W wings were essentially equal to the values for the comparable swept=
back wing at both zero and 0.7 Mach numbers.

The W wing of figure 8 has been chosen to illustrate the effect of
number of steps and of yawed vortices on span loading. It 1s seen that
the calculated loading at the tip is reduced slightly by the use of
40 steps In place of 20. (See fig. 10.) The over-all change in loading
shape and serodynemic parameters was negligible for the case investligated.
The span loadings obtalned using rectangular and yawed vortices sre also
presented; the over-all accuracy was essentially equal uslng yawed or
unyawed vortices. )

CONCLUDING REMARKS

Comparison of loading results by using 20 steps with lifting-surface
results indicated that the 20-~-step method generally overestimated the
amount of loadlng at the wing tip. However, values of lift-curve slope,
lateral center of pressure, serodynamic center, and loasding shape across
the inboard three-quarter semispan by using the 20-step method were
generally in satisfactory agreement with lifting-surface results.
Although use of an exlra step at the wing tip provlided some improvement
in the load distribution near the tip, the over-all Improvement did not
appear to warrant the extra calculation time involved. For & representa-
tive W plan form, it was found that use of 20 steps provided a span
loading that was essentially in agreement wlth 40-step results.

Langley Aeronautical Laboratory
National Advisory Committee for Aeromautics
Langley Fileld, Vs.
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TABLE I.- DOWKWASH FUNCTION F-*(Vb‘, x, ¥) FOR YAWED VORTICES

Fy(¥, x, y) =[ 1 (7 + 1)cos ¥ + (x + tan ¥)sin ¥ _
¥ 8in ¥ - x cos ¥ l/(y+l)2+(x+ta.n1y)2

(y - Llcos ¥ + (x - ten y)sln y| 1 | _ (x + ten ¥) -
fr = 1)2 + (x - tan ¥)2 Y+ iy + D2+ (x + ten y)2

1 1 - (x-ta.nt)
Y- Jiy- 12+ (x - ten ¥)2

..

+¥

%%

Fyl¥, -x, 0) = 4 - Fy(¥, x, 0)

| Fl-¥%, x, ¥) = F*(*: %, =¥)

DISTANCES EXPRESSED IN VORTEX SEMIWIDTHS

Fy(¥, x, y) for ¥ = Fy¥, x, ¥) for ¥ =
x x :
30° u5° 60° 30° 45° 60°
Yy = (s} Fy= o}

0.50 -2.9458 -3.8516 -6.0653 0.57 -2.4246 =3.175k -5.0929
.51 -2.8618 -3.7347 -5.9098 .58 -2.3613 -3.0939 =k 973k
.52 -2.7813 -3.6321 -5, T60L .59 -2.3003 -3.015% -1,8580
.53 -2.70h1 -3.5335 -5.6167 .60 -2.2416 -2.9397 -k, Th65
. -2.6300 -3.4387 -5.4784 .61 -2,1851" -2.8666 -k, 6387
.55 -2.5588 -3.3476 -5.3452 .62 -2.1305_ -2.7961 =k 53hk
.56 -2.490k -3.2599 -5.2168 .63 -2.0779 -2.7279 ~k. 14335
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TABLE I.- DOWNWASH FUNCTION Fy(¥, x, y) FOR YAWED VORTICES - Continued

Fyl¥, x, y) for ¥ =. Fy(¥, %, y) for ¥ =
x T
30° 15° 60° 30° 450 60°
y=0 y=2
-2.0272 -2.6620 -k, 3359 -60.00 -1.3331 -1.3331 ~1.3331
-1.9781 ~2.5982 b, 2ok13 -20.00 -1.3309 ~1.3308 ~1.3308
-1.9308 ~2.5366 -4.1496 -10.00 -1.3236 -1.3236 ~1.323%4
-1.8851 -2.h769 -h,0607 -6.00 -1.3078 -1.3076 -1.3067
-1.8409 -2.4192 -3.97hk ~4.00 -1.2813 -1.2808 ~1.2783
-1.7567 -2.30901 -3.8095 -3,00 =1.2513 -1.2509 -1.24k69
-1.6780 -2.2056 -3.6540 -2,00 -1.1922 -1.1937 -1.1900
-1.6041 -2.1083 -3.5071 -1.50 -1.1410 -1.1463 ~-1.14%62
-1.5348 -2.0166 -3.3682 +1.20 -1.0990 -1.1087 -1.1131
-1.4696 -1.9302 -3.2365 -1.00 ~-1.0648 ~1,0787 -1.0878
-1.4082 ~1.8487 -3.1117 -.80 =1.02k4k =l.0441 =1.0595
-1.350% -1.7T716 -2.9932 -.60 -.977L -1,0043 -1.0280
-1.2959 -1.6987 -2.8806 Ty -.9217 -.9586 -.9929
-1.2LkL -1.6297 -2, TT34 -.30 -.8908 -.9333 ~.9740
-1.1957 -1.56h43 -2.6712 -.20 -.8576 -.9063 -.9540
-l.1h97 -1.5023 -2.5739 -.10 -.8223 -, 8774 -.9329
. -1.1061 -1,4435 -2.4810 .00 -. T84T -. 8467 -.9107
. ~1,0649 -1.3876 -2.3923 .10 -. Th53 -.8142 -.8873
. -1.0257 -1.3345 -2.3074 .20 -.TOk2 -, 7758 -.8628
. -.9886 ~1,28h1 -2,2263 .30 -.6618 -.T436 -.8370
1. -.9533 -1,2361 -2.1486 Lo -.6188 -: 7058 ~.8099
1. -.8725 ~1.1259 -1.9684 .60 ~-.5333 ~. 6265 -.T518
1. -.8011 -1.0281 -1.8058 .80 -.4528 - 5hhT -.6886
1. -. 7376 -.9k12 -1.6588 1.00 -.3813 -.h64h8 -.6207
1. -. 6811 ~-.8637 -1.5255 1.20 -.3206 -.3913 -.5hol
1. -.6306 -.Tohk -1.kok3 1.50 -.2488 ~. 2993 -. 4409
1.30 -.5853 -.7323 -1.2939 2.00 S+ X N I——— -.2836
1.35 ~-. 5445 - 6766 -1.1931 3.00 ~.0897 -.0973 -.1220
1.ho -.50T7 -.6265 -1.1011 L.o0o -.0546 ~. 0574 -. 0657
1.50 - -.5h40h -.9399 6.00 -.0260 -.0266 -.0282
1.60 -.3915 -.4699 -.8047 10.00 -.0097 -.0098 -.0100
1.80 -.3103 . ~.3632 -.5962 20.00 -.0025 -.0025 -.0025
2.00 -.2517 -.2882 - hhg5 60.00 ~.0003 -.0003 -.0003
2.40 -, 1749 -.1935 -. 2725 :
3.00 -.1118 - 1197 -.1505 ¥ = =2
4,00 -.0628 ~.0653 -.0743
6.00 -.0278 -.0283 -.0300 -60.00 -1.3332 -1.3331 -1.3331
10.00 -.0100 -.0101 -.0103 -20.00 -1.3308 -1.3308 -1.3308
20,00 -.0025 -.0025 -.0025 -10.00 -1.3236 -1.3235 -1.3233
ko.00 -.0006 -.0006 -.0006 -6.00 -1.3074 -1.3068 -1.3051
€0.00 -.0003 -.0003 -.0003 -4, 00 ~1.2787 -1.2760 -1.2677
-3.00 ~1.2436 -1.2361 -1.211%
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TABLE I.~ DOWNWASE FUNCTION Fy(¥, x, y) FOR YAWED VORTICES - Continued

F\y(llf, X, y) for ¥ = Fw(ﬂf, x, y) for ¥ =
x :
30° k50 60° 30° 450 60°
¥y =-2 y=15
-2.00 | -1.16k2 | «1,1381 | -1.0497 5.00 | -0.0280| ~-0.0287} -b.030L
-1.50 | -1.0845 | «1.0340 | -.892h4 10.00 L0090 -.0091| -.0092
-1.20}| -1.0128 | =-.9420 i -.T840 20.00| -.002k} =~,0024| -,0024
-1,00{ -.9521| -.8685| -.T71i26 60.00| =-.0003| -.0003| -.0003
-.80] -.8806| -.7887| -.64h4T
-.60| -,8001| -.T069 | -.5815 y ==k
= B0 . TIE5 | -.6275 | =-.5235
-.30| =.6715| -.5897 | -.ho6h -60.00 | ~0.2664| ~0.2664 | -0.2664
-.20| -.6292| -.5536| ~.4706 -10.00 | =.2577| =~.2576| -.25Th
-.10f -,5880 | -.5192 | -. 160 -5.00| -.2386| -~.2379{ =-.2362
001 ~.5486 | -.4866 | -.hoo6 -3.00 -.2141 -.2121 | -.2075
.10 | -.5111 | -.4559 | -.4005 -2,00| -.1925{ ~.1894 | -.1828
20 = k5T | -.be7 379k -1.00 -.1629 -.1590 | -.1519
<301 =.kk25 | -.BO0O | -.359% -.20} -.1353| -.1316)] -.1258
o | -.bi16 --37&7 -.3k0k .20]| -.1213§ ~.1180| -.1132
B0 | -.3562} «.3290 | -.3053 1.00| -.0952| ~.09301 -.0902
80| -.3089 | =.2892 | -.2738 2.00| -.0687| -~.0676| =-.0667
1,00 -.2686| -.2546 | -.2455 3.00} -.0b95[ -~.0491 | -.0ho1
1.20| -.2343 | -.2247 . 2202 5,00 | =.0272]| ~.0272] -.0275
1.50| -.1923} -.1870 | -.1872 10.00 -.0089 ~.0089 | -.0090
2.00] -.1k12 | =.1396 | -.1433 20.00 | -.002h| -~.0024t% -.002L4
3.00| -~.0820 | -.0824 | ~.086L 60.00| -,0003| ~.0003]| -.0003
h,oo| -.0520 | -.0525 | -.0551
6.00} =.0255 | -.0257{ -.0266 y=6
10,00 | =.0097 | =-.0097 | -.
20,00 | -.,0025 | -.0025 | -.0025 -60.00 | ~0.1140 | -0.1140 | -0.11k40
60.00 { -.0003 ( -.0003 | -.0003 -20,00} -.1119{ =~,1119| -.1119
: -10.00 | -.1064} -~.106h | -.1063
v =15 -k,00| ~-.0896]| -.0808] -.0898
-2.50| -.0801] ~.0804k| -.080T
-60.00 | -0,266% | -0.2664 | -0.2664L -1.00| -.0676} ~.0681} -.0689
~10.00 | -. 2577 | =-.2577 | -.2576 .00] -.0581} ~.0588 ) -.0599
-5.00 | -.2395 | =.2395 | -.2391 1.00 | -.048L4| ~.0k01 | -.0505
-3.00 | -.21T2 | =-.2176 | =.2L75 2,50 | -,0354| ~-.0360| -.03T3
-2,00 | -,1980 | -.1991 | -.1999 k.00 -.025h -, 0258 | -.0267
-1.00 | =.17A5 | =.1737{ -.1765 10.00 | -.0080| ~.0080| -.0082
-e20 | =.1bsk | -.1486 | -.1535 20.00 | -.0023 ] =~.0024 | -.002k
.20 | -.13184} -.1351 | -.1k09 60.00 1 -.0003| ~.0003 | -.0003
1.00 -.1038 - 1077 | =-.1147 :
2.00 { -, 0T42 | -.07T73 | -.0838
3.00 | -.0526 | -.0546 | -.0592
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TABLE I.- DOWNWASE FUNCTION Fy(¥, x, y) FOR YAWED VORTICES - Continued

Fy(¥, x, ¥) for ¥ = F@(w, x, y) for ¥ =
X X
300 )_|_5O 600 300 ]4_50 600
Yy = - 6 y = 10
-60.00 | =0.1140 | -0.1140 | -0,1140 ~-60.00 | -0.0401 | -0.0hk01 | -0.0401
-20.00 | =-.1119{ =-.1119| -.1119 -15.00 | -.0370}! -.0370| -.0370
-10.00| -.1063| =-.1063| -.1061 =5.00{ -.0294| -.0294} -.029L
-4,00) -.0889| -.0885| -.0876 1.00 | -.0223| =-.0224| =.0225
-2.50} -.,0789| -.0783]| -.0770 1.00| -.0183| =-.018:k] -.0185
-1.00| -.0659| -.0651L| =.0638 5.00 | -.,0112| -,0112) -~.011h
.00] -.0562| -.0555| -.0544 15.00 | -.0034]| -.0034[ ~.003%k
1.00 Lohe7| -.0k61 | -.045L 60.00 | «.0003| -.0003| =-.0003
2.50 | -.0341 ] -.0339 .0336
L.oo| ~-.0246 0245 | ~,0245 y = =10
10.00 .0079 | -.0079 | -.0080
20.00 | -.0023 .0023 | -.002h ~60.00 | -0.0401 | ~0.0401 .0ho1
60.00 | -.0003}| -.0003| ~-.0003 -15.00 | -.0370| =-.0370| =.03T0
-5.00 | -.0292] -.0292| =.0290
y=28 . -1.,00 | =-.0221} -.0220| -.0219
1.00} -.0181{ =-.0180 L0179
~-60.00 | -0,0632 | -0.0632 | -0.0632 5.00] -.0110| =-.0110}) «.0110
-15,00 | -.0598 | -.0598 | -.0598 15,00 | -.0034| -.0034 .0034
-7.00 | ~.0528 | -.0529 | ~-.0528 60,00 | -.0003| -.0003| =.0003
-3.00 | -.0432 [ =-.0433 | -.0434
-1.00 | ~.0360 | -.0362 .0365 y =12
.00 .0320 ! -,0322 | -.0326
1.00 | -.0280 | -.0283 | -.0287 -60,00 | -0.0277 | -0.0277 | ~0.0277
3.00 | -.0207| -.0209 | ~.0213 -15.00 | -.0249 | =-.02ko 0249
7.00 | -.0108] -,0109 | -.0111 -5.00 | -.0194 | -.019% .0195
15.00 | -.0037 !} -.0037 | -.0037 00| -.01k0| -.0141| -.01k2
60.00 | -.0003 | -.0003 | -.0003 5.00 | -.0086 -.0087 -.0087
15,00 | -.0031| -.0031} =.0031
vy =-8 60.00 § -.0003| ~-.0003| =-.0003
{-60,00 | -0,0632 | -0.0632 | -0,0632 y = =12
-15,00 | -.0598 | -.0598 | -.0598
~7.00 | -.0527 | ~.0526 | -.0524 -60.00 | -0.0277 | -0.0277 | -0.0277
-3.00 | -.0k28 | ~.0h26 | -.Ok22 -15.00 | -.024k9 | -.0249 | -,0249
-1.00 | -.0355 | -.0352 | -.0348 -5.00 | -.0194k | -.0193| -.0192
.00} -.0315 | -.0312 | -.0309 .00 [ -.0139| -.0139| -.0138
1.00 0275 | -.0273 | -.0270 5.00 [ -.0085{ -.0085| ~.0085
3.00 | ~.0203 | -.0202 | -.0200 15,00 { -.0030 | =-.0030] =.0030
7.00 | -.0106 | -.0106 | -.0106 60.00 | -.0003 ] -.0003{ =~.0003
15,00 | -.0037 | -.0037 | -.0037
60,00 | -.0003 | -.0003 | -.0003
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TABLE I.- DOWNWASE FUNCTIOKN F*(t, x, y) FOR YAWED VORTICES - Concluded

Fy(¥, x, y) for ¥ = Fy(¥, %, y) for ¥ =
p.4 X
30° 35° 60° 30° 350 60°
~60.00 | -0.0202 | -0.0202 | -0.0202 -60.00}{ ~0.0121| -0.0121 ( ~-0.0121
~10.00| -.0162| -.0162| -.0162 -10.00f -.0092]| -.0092| -.0092
-3.00} =-.0124| -.0125| -.0125 L00) -.0062| -.0062| -.0062
3.00} -.0081| -.0081] -.0082 10.00} -.0032} -.0032| -.0032
106.00f -.0043| -.0043]| ~.00L3 Lo,00} =-.0005| =.0005| -.0005
60.00| -.0003] -.0003| -.0003
¥y = ;]_8
y = -1k
-60.00| -0.0121 | =0.0121 ] -0.0121
-60.00 | =0,0202 | -0.0202 | -0.0202 -10.,00} -.0092} =.0092] -,0092
-10.00 ) -.0162 ] -.0162]| -.0162 .00 -.0062| -.0062| -.0062
-3.00} -.0124| -.0124 | -.0123 10.00| -.0032| -.0032| -.0032
3.00{ -.0081]| -.0081| -.0080 Lo.00} -.0005| -.0005| -.0005
10.00 | -.0043 | -.0043 | -.0043
60.00 | -.0003| -.0003}! -.0003
¥y =20

00 | ~0,0098 | -0.0098 | -0.0098
00} "=.0073] ~-.0073| =-.00T73
00} -.0050] ~-.0050] -.0050
10,9}
oo

60
10
-60.00 | =0.015% | -0.015k | -0.015k
-10.00 | =.0120 | =.0120 ]} =-.0120 10.
«2.00 | «.0088} -.0088 | -.0089 Lo,

-.0028 | -.0028 | -.0028
-.0005| -.0005]| -.0005

00 | -.0069 -:0069 -.0069
.00 | «.0037| =.0037| =.0037
00 | =.0006 ] =.0006 } -.0006 ¥y =-20

¥y = =16 -60.00 | -0.0098 | -0.0098 | -0.0098
: -10.00] ~.0073]| -.0072] -.0072

.00| ~.0050| -.0050| -.00%0

-60.00 |=0.0154 [-0,015k |-0.0154 10.00 | ~,0028 | -.0028 | -.0028

~10.00 | =.0120 { -.0120 | -.0120 40.00| -.0005| -.0005| -.0005
-2.00 | -.0088 | -.0088 | -.0088
2.00 | -.0068 | -.0068 | -.0068
10.00 | -.0037 | -.0037 | -.0037
ko.00 | =.0006 }| -.0006 | -.0006
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COMPUTING FORM FOR 20-STEP LOADING COEFFICIENTS OF A SWEPT

WING BY USING ILLUSTRATED YAWED VORTICES

P
norvy =1 et 10 3
PR |
t-g=1= by
Q
A= 4g° '
A= 8 . -
/\
A= 08 \ . -
o - 2 r 9) t - 1 OJG“
5= 21 s @
v - __
' -
ANy
\-
. My % _ _
o e s \ é) S J
vt PR T I} S o
: . - PR I & f" .
naA 1 L N
" [au valoes expreseed tn horaesioe I‘Zm.ﬁ:.. ; s -
S 7 T
@ @ @ ® @ @ @ | - ® @
<
Ay -qp ™ Py-Pp | G+l Left Right Py
ala,) g @uale-0@QD-» |©-@ .
B 4 @@ | @Ol @, ® |y ®. -@) @+ B
Table I
T IETRIET [ .6 -12,4 | -3.68 -2.6888 -38 4.165 i =0.001 4.104
2 -17 -2 ~4.5883 | -38 -1.290 -.002 -1,268
] -15 -4 -0.5838 | -34 -.948 ~.008 -.250
4 -13 K] -8.6ass | -3 -.104 -.002 -.106
[ ~11 -8 -10.5838 | -3¢0 -.067 -.008 -.060
3 - -10 -12.6883 -28 -.086 L +.004 ~0AC
7 -7 -12 -14.6833 | -26 -.026 -.00¢ ~.039
0 ) 7Y -16.6888 | -24 -.018 ~08 ~023
9 3 -16 -19.58%8 | -12 -.014 =~.007 -8
10 v -1 -18 ¢ -20.6838 | -0 -,011 -.008 -.019
2 -7 ] 19 2 6.8 ~19.2 | -8.7500 ~0.7500 | -38 -1.086 -0.002 -L007 |
2 -17 0 -2.7500 | -34 4,144 ~.002 £.142
3 -15 -2 -4.7500 | -32 -1.389 -.002 -1,296
4 -13 -4 -8,7600 | _-30 - 348 =008 =261
5 ~11 -6 ~8.7600 ! -28 -.104 =008 -.107
6 -9 -8 -10, -28 087 =004 =00
kd 1= -10 =12,7500 | -24 =086 L =06 =041
[ -5 -13 -14.7500 | -22 -.086 -.008 =081
] -3 -14 -26.7500 | -20 ~.016 -.008 -.088
10 -1 -16 A . -18.7600 -18 =014 =010 =084
1 -1 -19 18 0.4 -19.8 | -4.0633 13.9167 - -0.0028 -0.002 ~0.004
2 =17 16 11.9167 | -18 -.008 P -.008 -.008
3 -18 14 0.9167 | -.004 - -.008
4 -18 12 79187 | 14 -.007 -.006 -.012
5 =11 10 5.9187 { -12 -.010 -.008 -.018
[] -8 [ 8.9107 | -10 -.018 -.013 =081
[3 =1 ] 1.9167 -8 -.040 -.024 -.064
8 -5 4 -.0883 -6 ~.145 - =311
g -3 2 -2.0833 -4 -1.200 . =200 -1.400
1 0 ~£.0833 -2 £.083 -1.282 3,781
1%ame a3 column 8, A= 48° - b
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TABLE T,~ TLILUSTRATIVE EXAMPLE OF -STEP LOADING SOLUTION USING YAWED YORTICES
A-Ho.Alolhnulﬂ.lD-"

el pf e or QM0 r 06 T, 0@ T, o x, 0Oy 008 r 00 1) 009 T . 06238
..‘_1:9.3,7_1"; _Jmlﬂ_l'; ,:LEB.LI‘Q ._'..Bﬂ_r: __".m_[‘a _:‘Q.ELI; __-_.Qﬂ._r.', _";0}1_1'; ._'.M_r'g _'%_rio-_&?ﬁﬂﬁ_
- 1] ] 1)
ol T I ) I T i Ty T o T~ —EEE
’ - t ' + ] ] ] | 18
86 I‘1 T r; T r; by Ty r ra Lo 42838
'I'_' - 1 ' ] r 1 r
=017 I‘i l‘z iy r" Ty I T, |y v rio = 008318 |
! ) - I‘; r; 1"3 rz T r'a 1'.', Ty g M~ —f2die
L - ' 1 ] t
o008 T T, L, r, ry r} T, r I T~ 20N
l - ] ] 1 r 1 I [l
| =008 I, by T T, I, ry r, I I, Xy~ —R888
L" - 1 ' ] 4 1 ’
003 1'; T, |y iy Te ra Ty ré ra L™ 088318
- v r . v ; - ' ' -.004 -2 =400 2%l .
j 004 l‘] 008 I‘a A8 I‘s —2 1‘1 =018 I‘! 031 Ty I',', 1 rs 1 I; 1‘m 02858
ac. 10 [
L A 0r
g E I L = [ = 0,3860 T = 06450
@ "mZMh T T 1 =0.3860 y =m0
- 8843 1 O [y = 0.5040 Ty = D83
10 o) Ky =006  Kg=1.087 Ty = .beat Ty = 06878 oy
= 10 -
ot G Kpn085  Kp=1,108 Ty = D588 Ty =068~ "Byg
~ 46,88 Ky = 0.081 K= L112 Ty = 0.6241 Ty = 0.0368
no = 2744 K‘ = 1,004 xg - le 10
Kg~1008  Eygm 1.0M ET - -NACA.-

squation (i) of TN 1491

ETIOLT WY VOVN

o
]
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TABLE IV.- COMPUTING FORM FOR 20-STEP LOADING COEFFICIENTS OF M OR W WINGS;
USING RECTANGULAR VORTICES 1
Nlustrated for W wing '

P
n ory =l ete. WT
| ‘
t-r*m~_ %
Q
n
v MA‘L i--_l f 1
tanA — -+_1. - -
810, ®'A(1+n = 4.16887
A= _8 N
A= 086 -
K= 10 ' :
4(1-&)@:-%2
- 2x - -
" 2 @ TP 0.08338
All values are exp d {n sh fwidthe

Calumns indicated show repetition for equal n

@é@é@ ® A0 ©® @ ® @ ® © @ ©

n q ~ Py -Pn Qy-4n |2y+ 9 Left Right Fyn
b0 @O - 4| « (@ D@ D) @@@@u 3-B-6| " 0.0 | @ 0l e
- v - ——
1 [ - -1~ }-1.0e881" -19] 10| -go6ess . -rg ‘| ledier | -2.6688 o -3 4.148 0,061 4044
2 -+ T |7 17 -.5688 2 | . - 000 -0 907
3 -18 - 14167 < | -4 ~.088 002 -0
4 -13 -2 ] 34187 =S - -.028 -.008 ~.080
3 -1} a1 ] 5.4167 -3 -3¢ -.01% 008 =0t
[] +1 -20 -9 CRE | 54207 | 10 [ -a8 =011 -.002 =018
] -1 T 1 34107 -12 -30 --010 ~-.008 =01
3 5 5 14107 | 14 | -m ~.000 -.003 -Oix
[] =] 8 _t -6638 "| -18 -23 ~om '] -.o04 013
10 3 T 1 -2.5638 | -18 | -20 ~.007 =.008 -.013
a | 1] - e U ETIE 7| -19 14,3600 | ~4.7500 2 | o0 [ 1904 -a.003 | -1.206
2 -17 -7 ~2.7600 [T 4108 -.008 4,190
3 -18 -15 -.7500 -3 | -2 -850 -.002 =961
4 -13 -13 4 | -2 =091 =002 =003 |
[ =11 -11 8.2500 -4 -28 -.028 =008 =03
] +1 -30 -9 [] 3.2800 ] 26 -.020 -.000 083
T -1 7 12500 | <10 | 24 -.018 -.008 -.081
L] -5 [] -.7600 -12 -2 -.018 =004 =019 |
2 3 F] -27600 | -14 -012 =008 =018
10 -1 1 ~4.7500 [ -18 -18 -.010 -.008 =018 |
101 [ +f -1 | o167 20 -1 ] -19 ) = -6.0538 | -~4.083% 18 | -20 | -oo0m -0.008 | -0.014
2 -1 17 -8,0858 16 | -19 =,000 =007 ~018
] -18 -18 -.0533 i | -18 -.011 -.008 019
4 -13 13 1.0167 i@ ) -1 -.012 -.008 =031
5 : =11 ET 3,917 10 | -13 018 ~Q10 =8
[] + ] 9 8.9167 8 | -10 018 =013 =081
7 T ] 7 1.9167 s = -.03% -.08¢ ~.063
2 -6 3 -.0883 4 -8 -.138 =088 104
[] -3 3 ~2,0839 1 4 | -1308 ~108 | -1.390 |
10 -1 ] ~4.0883 [ -1 4.069 -1.288 2.778
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Section A-A

Figure 1l.- Vortex pattern, system of axes, and subscripts used in calcu-
lation of span loadings by finite-step method (N = 10).
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Figure 2.- Vortex pattern, system of sxes, and subscripts used in calcu- -

lation of spen loadings by finite-step method; illustrated for W plan
form (N = 10).
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L2 -
Y J{—- = =T -
oS | == =l [45-4-/
S L0 35, \\
3 N
8 &8 N\
% : ac,
Q Line L N
8 6 Symbol Method da ycp a.c. Ref. \\
§ . 20-Step |3.04 |474 | 197 | — \
s Falkner |
S » —-— |Weissinger 283 (478 206 | 3 !
&>
., [T T
/ 2 3 4 5 .6 .z 8 .9 1.0
4
o § B D A e e 45-1-1
o L2 T——
S ]
> T
i~ [~
g /0 -
;§ 35 SN
TN
3 s e
N ™
S & NN
N ‘ Line ac, N \\
\Z Symbo! Method daL Yep a.c. i Ref. \\'\
S 4
& 20-Step | 146 | 439 |220 | — M
_____|\Fatkner \
2 ey gl 147 | 424 | 165 | 5 \
% |
J 2 J 4 ) .6 e ) 9 1O
Spanwise station, —
%
2

Flgure 3.- A comparison of 20-step loadings with results of the Feslkner
and Welssinger methods.
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Figure 3.~ Continued.
SR

. DNESRENR NACA RM L50L13
| o =3~ [30-6-/
3c \N\
N
. %\
Line ac,
Symbol Method Ta Yep a.c. | Ref \\\\
20-Step | 392 | 473 (202 | — \\
Falkner ' K
126-6 mod | 388 | 463 | 187 | & \
——— |Weissinger | 368 | 470 | 200 | 3
0 / 2 3 4 S5 6 7 8 9 lo
0-6-1/
=t L N
3d N
\;\\\\
. \\\
K
Line da 3
Symbol Method 7 a Yep a.c. | Ref. \\
20-Step | 431 | 453 [250 | — \
- \Falkner . !
—————— 24.9 4.27 | 440|240 | & \
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